The strength of the rainbow Ramsey Theorem

نویسندگان

  • Barbara F. Csima
  • Joseph R. Mileti
چکیده

The Rainbow Ramsey Theorem is essentially an “anti-Ramsey” theorem which states that certain types of colorings must be injective on a large subset (rather than constant on a large subset). Surprisingly, this version follows easily from Ramsey’s Theorem, even in the weak system RCA0 of reverse mathematics. We answer the question of the converse implication for pairs, showing that the Rainbow Ramsey Theorem for pairs is in fact strictly weaker than Ramsey’s Theorem for pairs over RCA0. The separation involves techniques from the theory of randomness by showing that every 2-random bounds an ω-model of the Rainbow Ramsey Theorem for pairs. These results also provide as a corollary a new proof of Martin’s theorem that the hyperimmune degrees have measure one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Arithmetic Progressions and Anti-Ramsey Results

The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoičić conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distin...

متن کامل

Random reals, the rainbow Ramsey theorem, and arithmetic conservation

We investigate the question “To what extent can random reals be used as a tool to establish number theoretic facts?” Let 2-RAN be the principle that for every real X there is a real R which is 2-random relative to X . In Section 2, we observe that the arguments of Csima and Mileti [3] can be implemented in the base theory RCA0 and so RCA0 +2-RAN implies the Rainbow Ramsey Theorem. In Section 3,...

متن کامل

Size and Degree Anti-Ramsey Numbers

A copy of a graph H in an edge colored graph G is called rainbow if all edges of H have distinct colors. The size anti-Ramsey number of H, denoted by ARs(H), is the smallest number of edges in a graph G such that any of its proper edge-colorings contains a rainbow copy of H. We show that ARs(Kk) = Θ(k / log k). This settles a problem of Axenovich, Knauer, Stumpp and Ueckerdt. The proof is proba...

متن کامل

Rainbow numbers for small stars with one edge added

A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n, H) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H . The rainbow number rb(n, H) is the minimum number of colors such that any edge-coloring of Kn with rb(n, H) number of colors contains a rainbow copy o...

متن کامل

Rainbow Ramsey simple structures

A relational structure R is rainbow Ramsey if for every finite induced substructure C of R and every colouring of the copies of C with countably many colours, such that each colour is used at most k times for a fixed k, there exists a copy R∗ of R so that the copies of C in R∗ use each colour at most

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2009